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Abstract Current commercial software tools for transmission and generation
investment planning have limited stochastic modeling capabilities. Because
of this limitation, electric power utilities generally rely on scenario planning
heuristics to identify potentially robust and cost e↵ective investment plans for
a broad range of system, economic, and policy conditions. Several research
studies have shown that stochastic models perform significantly better than
deterministic or heuristic approaches, in terms of overall costs. However, there
is a lack of practical solution approaches to solve such models. In this paper we
propose a scalable decomposition algorithm to solve stochastic transmission
and generation planning problems, respectively considering discrete and con-
tinuous decision variables for transmission and generation investments. Given
stochasticity restricted to loads and wind, solar, and hydro power output, we
develop a simple scenario reduction framework based on a clustering algorithm,
to yield a more tractable model. The resulting stochastic optimization model
is decomposed on a scenario basis and solved using a variant of the Progressive
Hedging (PH) algorithm. We perform numerical experiments using a 240-bus
network representation of the Western Electricity Coordinating Council in the
US. Although convergence of PH to an optimal solution is not guaranteed for
mixed-integer linear optimization models, we find that it is possible to obtain
solutions with acceptable optimality gaps for practical applications. Our nu-
merical simulations are performed both on a commodity workstation and on
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a high-performance cluster. The results indicate that large-scale problems can
be solved to a high degree of accuracy in at most two hours of wall clock time.

Keywords Transmission Planning · Generation Planning · Stochastic
Mixed-Integer Programming · Progressive Hedging

1 Introduction

The US electricity transmission grid is the world’s largest machine. It is com-
posed of 200,000 miles of high-voltage transmission lines that transport elec-
tricity from over 19,000 generators to 145 million customers, with annual rev-
enues of $364 billion for the year 2012 [17]. Operations for this extremely
complicated system are managed using advanced optimization techniques in
both deregulated markets (e.g., California ISO, PJM, MISO, and ISO New
England) and vertically integrated utilities (e.g., SPP and BPA). Advances
in both mixed-integer optimization techniques and computing technologies
have allowed utilities to more accurately represent the physical characteristics
of power plants and obtain lower-cost operations plans, which have yielded
cost savings of approximately $300 million per year [48]. New developments
in stochastic unit commitment techniques are receiving increasing attention
from academics, vendors, and the government, as they may further increase
the economic e�ciency of software for operations planning under increasing
penetration of renewables [49]. In contrast, long-term planning tools – par-
ticularly for transmission investment – have received much less attention. Es-
timates indicate that the US electric power industry will require $2 trillion
of investments in new transmission and generation infrastructure by 2030 in
order to meet forecasted demand and policy objectives [14]. Nearly half of
these anticipated investments correspond to upgrades of aging transmission
and distribution systems.1

Optimal transmission investment planning is an extremely challenging prob-
lem that has been extensively studied [35]. Although some commercial tools
are capable of optimizing transmission system topology in order to minimize
system costs (e.g., NetPlan [1]), most transmission planning studies employ
heuristic decision rules. One standard approach is to use production cost sim-
ulation packages (e.g., PROMOD [3] and PLEXOS [2]) to assess the perfor-
mance of exogenously created – typically via domain experts – transmission
and generation investment plans. Unfortunately, these simulation tools do not
recommend potentially better investment alternatives than those being tested.
Therefore, they can only be considered as screening tools [34, 47].

Beyond the complex combinatorial structure of optimal transmission and
generation investment planning problems, factors such as increased environ-
mental concerns, rapidly changing economic conditions (e.g., due to shale gas

1 The referenced report [14] estimates that $298B in transmission and $582B in distribu-
tion investments are needed by 2030.
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extraction), and the increased penetration of variable generation from renew-
ables introduce significant new risks for electric utilities. Planning under uncer-
tainty requires identifying a single investment portfolio that would minimize a
certain metric (e.g., expected cost or Conditional Value-at-Risk) when tested
against a broad range of scenarios – which is significantly more complicated
than planning for a single future. The price of disregarding uncertainty, e.g.,
by only planning for the most likely scenario, includes stranded or ine�ciently
sited transmission and generation assets, or higher-than-necessary future in-
vestment and operations costs.

In practice, planners account for uncertainty by performing scenario anal-
ysis, which involves finding an optimal (or near optimal) investment plan for
each of a set of scenarios independently. These plans are combined using heuris-
tic decision rules that result in a single, implementable investment recommen-
dation.2 However, investment plans that result from the application of these
heuristics can perform significantly worse (e.g., in terms of high system costs
and stranded assets) than truly stochastic approaches that seek to minimize
the expected system cost [42]. Unfortunately, most stochastic-programming
based implementations are only demonstrational due to their high computa-
tional complexity, and as a result have only been applied to small test systems.

In this paper, we develop a stochastic mixed-integer transmission and gen-
eration investment planning model that explicitly accounts for the variability
of time-dependent parameters such as load and wind, solar, and hydro power.
We propose a practical scenario reduction framework to select representative
scenarios and an application of the Progressive Hedging algorithm to solve the
resulting reduced stochastic optimization model. We compute a lower bound
on the expected optimal system cost by solving a linear relaxation of the
stochastic mixed-integer linear planning problem. An upper bound is then
calculated by testing each trial investment plan against a large-scale simula-
tion of the operations problem considering the full (sampled) distribution of
stochastic parameters. Although convergence of the Progressive Hedging algo-
rithm to a global optimum is not guaranteed in the mixed-integer case, we are
able to find solutions with a 2.55% optimality gap for a 240-bus representation
of the Western Electricity Coordinating Council (WECC) in the US.

The rest of this paper is structured as follows. In Section 2 we review the
state-of-the-art in transmission and generation planning, together with algo-
rithms to solve large-scale investment planning problems. In Section 3 we in-
troduce a stochastic investment planning model that co-optimizes transmission
and generation infrastructure investment decisions. In Section 4, we propose
a scenario reduction framework based on the k-means clustering algorithm, to
facilitate more tractable computation. Section 5 describes our implementation
of the Progressive Hedging decomposition algorithm to solve our stochastic
model, and discusses as a relaxation of the soft constraints that link variables
across scenarios. Section 6 describes the WECC 240-bus test case and our as-

2 A common rule is to recommend investments in transmission lines that are part of the
optimal investment plan for most or all of the scenario-specific solutions [42].
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sumptions regarding transmission and generation build limits. In Section 7 we
present results from di↵erent numerical experiments on the WECC-240 case.
Finally, we conclude in Section 8 with a summary of our contributions.

2 Literature Review

Some of the earliest work on transmission investment planning was based on
linear programming [22, 63]. Advances in branch-and-bound algorithms for
mixed-integer linear programming allowed researchers to later model trans-
mission investment options using discrete variables [6, 51, 58]. This represents
an improvement over linear programming models because a) the modular or
”lumpy” characteristic of transmission investment alternatives can only be ac-
curately modeled using binary variables and b) Kirchho↵’s Voltage Law for
candidate lines can be enforced using linear disjunctive instead of nonlinear
constraints [24,45]. Further advances in the formulation of investment planning
problems account for linear [66] and piecewise linear losses [5]. A comprehen-
sive summary of transmission planning models is provided in [35].

Transmission planning models that explicitly account for uncertainty often
rely on stochastic programming [4,42–44,50,60,66] or real options [27]. Some
of the most common sources of uncertainty addressed in these models include
demand growth, fuel prices, technology costs, regulatory conditions, and the
quantities of time-dependent resources such as load and wind, solar, and hydro
power. Although stochastic models are significantly more di�cult to solve than
their deterministic counterparts, modeling uncertainty explicitly in the deci-
sion process can yield significant cost savings. For example, [42] finds that by
ignoring uncertainty (e.g., by using a standard deterministic planning model)
one can increase total system cost relative to a stochastic model by more than
the cost of the transmission lines themselves. However, due to computational
limitations, solving such models directly (specifically, via direction solution of
the extensive form or deterministic equivalent) for large-scale power systems
can be extremely slow or even infeasible due to time and/or memory limits.

An alternative to directly solving a stochastic program is the application
of decomposition algorithms. One of the first and most widely used decompo-
sition strategies is based on Benders decomposition [7]. The specialization of
this approach for stochastic programs is known as the L-shaped method [10].
The L-shaped algorithm separates the investment problem (i.e., the master
problem) from the operations problems (i.e., subproblems), which is particu-
larly advantageous for models that account for discrete investment alternatives
through the use of binary decision variables. The quality of the trial invest-
ment solutions that are found in the master problem is progressively improved
through the addition of Benders’ cuts that are computed from the subprob-
lems. Asymptotic convergence is guaranteed for subproblems that are convex
with respect to the investment variables [23]. Examples of implementations
of Benders decomposition to solve deterministic transmission planning prob-
lems include [9,24,56]. Stochastic applications include models that co-optimize
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transmission and generation investments simultaneously [15, 44] and formula-
tions that focus solely on generation expansion planning [11,12,31,33].

Other decomposition approaches subdivide stochastic problems on a sce-
nario basis, i.e., stochastic investment programs are divided into a collection
of linked deterministic investment problems. Lagrangian relaxation [13] and
Progressive Hedging [55] have been utilized to solve large-scale stochastic unit
commitment [49, 57] and generation expansion planning [33] problems. To
the best of our knowledge, only Progressive Hedging has been used to solve
stochastic transmission planning problems [54]. However, this application was
restricted to a 14-bus test case.

Researchers have also proposed heuristic algorithms to find high-quality so-
lution to large-scale transmission investment problems. These include greedy
randomized methods [8], heuristic solutions to the investment master problem
in Benders decomposition [46], search algorithms based on sensitivity analy-
sis [36], genetic algorithms [59], and sequential approximation approaches to
account for wind and load variability [50]. Although some of these heuris-
tics can obtain potentially good solutions, none of them provide a metric of
solution quality, such as a bound on the optimal system cost.

3 Model Description

We now propose a stochastic investment planning model that co-optimizes
transmission and generation investment portfolios. To maintain linearity of the
operations model, we consider independent hourly economic dispatch models
and ignore all ramping and unit commitment constraints, i.e., constraints that
link operational hours across time and determine unit on/o↵ state. These
relaxations could potentially yield solutions that over-estimate the flexibility
of the corresponding candidate generation portfolio, and therefore yield higher
production costs than those predicted by a full-fidelity operations model with
commitment and dispatch. However, in practice the additional costs yielded
by these relaxations represent only a small fraction of the total system cost.3

Thus, all variables are assumed to be continuous except for those used to
capture transmission investment alternatives. We also assume that generation
marginal costs are constant.

We now introduce the primary notation used to define our investment
planning model. Additional parameters will be introduced subsequently as
needed.

Sets and Indices

3 For instance, [32] reports that although the generation investments recommended by
planning models with and without unit commitment are di↵erent, the generation fleet se-
lected by a model based strictly on economic dispatch yields a total system cost that is only
0.02% higher than those resulting from a model based on unit commitment.
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A : Interfaces, indexed by a;
B : Buses, indexed by b;
G : Generators, indexed by i;
Gb : Subset of generators at bus b;
GE : Subset of existing generators;
GC : Subset of candidate generators;
GR : Subset of renewable generators;
H : Hours, indexed by h;
L : Transmission lines, indexed by l;
LC : Subset of candidate transmission lines;
LE : Subset of existing transmission lines;
T : Number of years in the horizon, indexed by t;

Parameters

Dbh : Load [MW];
Dbh⇤ : Peak load [MW];
ELCCi : E↵ective load carrying capability factor [%];
Fl : Line limit [MW];
FGa : Interface limit [%];
FORi : Forced outage rate;
GCi : Capital cost of generator [$/MW];
LCl : Capital cost of transmission line [$];
MCi : Marginal cost of generator [$/MWh];
Ph : Normalized duration (probability) of dispatch scenario;
LT : Construction lead time [years];
Ml : Large positive number;4

PORi : Planned outage rate;
RM : Reserve margin [%];
RPS : Renewable target [%];
V OLL : Value of lost load [$/MWh];
Y max
i : Maximum resource potential [MW];

Y inst
i : Installed capacity [MW];
� : Discount factor;
�l : Line susceptance;
 al : Element of interface-line incidence matrix;
�bl : Element of node-line incidence matrix;

Decision variables

4 The selection of disjuntive parameters is extremely important to ensure a tight mixed-
integer formulation. Here we follow the approach described in [42].
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flh : Power flows [MW];
gih : Generation dispatch level [MW];
rbh : Load curtailment level [MW];
xl : Transmission investment decisions [binary];
yi : Generation investment decisions [MW];
✓bh : Phase angles;

The objective function in our model minimizes the sum of capital invest-
ment cost plus the present worth of expected operations cost for a 50-year
horizon (T = 50). As in [42], we assume that all new transmission and gen-
eration infrastructure has a 10-year permitting and construction lead time
(LT = 10).5 The transmission system is modeled using a linear DC power
flow approximation, which is a standard assumption for long-term investment
planning studies.6 This formulation could be easily extended to account for
linear [66] or quadratic [5] transmission losses, but at the expense of a more
complex model.

Costs in our model are formally defined as follows:

Capital cost

CC =
X

i2GC

GCiyi +
X

l2LC

LClxl (1)

Present worth of operations cost for each dispatch scenario

OCh =

✓
1

1 + �

◆LT X

t2T

✓
1

1 + �

◆t

8760

 
X

i2G

MCi gih +
X

b2B

V OLL rbh

!
(2)

The objective function is then formally given as:

min CC +
X

h2H

PhOCh (3)

The core model constraints are given as follows:

Generation build limits

yi  Y max
i 8i 2 GC (4)

5 Although permitting and construction lead times for renewable generation technologies
and small conventional generators could be much shorter in the US, transmission and large
generation projects can take up to 10 years to complete.

6 Modeling AC power flows in a long-term investment planning model is an ongoing
subject of research.
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Installed reserves The installed capacity of renewable generation technologies
is derated using E↵ective Load Carrying Capability (ELCC) factors based on
historical data.7 For simplicity, we enforce a single constraint on available re-
serves in the system. However, this basic construct could be easily enforced on
subsets of buses (e.g., reliability regions), as is often done in large intercon-
nected systems. The peak-load hour is denoted h⇤.

X

i2G\GR

(Y inst
i + yi) +

X

i2GR

ELCCi(Y
inst
i + yi) � (1 +RM)(

X

b2B

Dbh⇤) (5)

Renewable target per year This constraint imposes a minimum amount of
power supplied from renewable generators, defined as a fraction of the sup-
plied demand. For power systems that span across multiple jurisdictions (e.g.,
the WECC or MISO), renewable targets are enforced on a state-by-state basis
(e.g., via state Renewable Portfolio Standards).

X

h2H

X

i2GR

Phgih � RPS(
X

h2H

X

i2G

Phgih) (6)

Kirchho↵ ’s Current Law

X

l2L

�blflh +
X

i2Gb

gih + rbh = Dbh 8b 2 B, h 2 H (7)

Kirchho↵ ’s Voltage Law (KVL) for existing lines

flh � �l
X

b2B

�bl✓bh = 0 8l 2 LE , h 2 H (8)

Kirchho↵ ’s Voltage Law for candidate lines We enforce KVL for candidate
lines using a disjunctive formulation that allows us to maintain linearity. To
avoid weaker than necessary relaxations, we use the minimum feasible values
of Ml such that the angle di↵erences are unconstrained if a line is not selected
for construction (xl = 0).

|flh � �l
X

b2B

�bl✓bh| Ml(1� xl) 8l 2 LC , h 2 H (9)

7 In reality, the capacity value of some renewable resources decreases as the amount of
installed capacity of the resource increases. For instance, in a system where most of the
peak-load hours occur in the late afternoon, when the probabilities of lost load are highest
and when solar resources are often fully available, the first few MWs of solar will directly
reduce the need of power supply from peaking generation units. In that case, solar resources
should be assigned a capacity value that is close to their rated capacity (i.e., ELCC ⇡ 1).
However, higher penetrations levels of solar could result in a shift of peak net load hours to
the early evening, when the resource is no longer available. In this second case, the marginal
contribution of an additional MW of solar capacity towards a reduction of the peak net
load (and a reduction of the probability of lost load) is nearly zero (i.e., ELCC ⇡ 0) [39].
In practice, electric power utilities rely on estimates of ELCC from historical data for new
power plants. In some cases, these values are updated year by year based on the actual
contribution of the resources towards reductions of peak net loads [40].
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Power flow limits for existing lines

|flh|  Fl 8l 2 LE , h 2 H (10)

Power flow limits for candidate lines

|flh|  Flxl 8l 2 LC , h 2 H (11)

Maximum generation limits We assume that all generators are dispatchable.
In particular, this implies that renewables resources can be (partially) cur-
tailed. Variability of renewable resources is modeled through coe�cientsWih 2
[0, 1] based on historical or forecasted data. Coe�cients Wih are set to 1 for
all conventional generation technologies.

gih Wih(1� FORi)(1� PORi)(Y
inst
i + yi) 8i 2 G, h 2 H (12)

Interfaces Some system operators impose limits on the sum of power flows
across group of lines (also known as flowgates). We assume that the interface
limits correspond to a fixed fraction of the installed transmission capacity of
the lines that belong to the interface.

X

l2L

 alflh  FGa(
X

l2LE

| al|Fl +
X

l2LC

| al|Flxl) 8a 2 A, h 2 H (13)

Integrality and non-negativity

xl 2 {0, 1} 8i 2 LC (14)

yi, gih, rb,h � 0 8i 2 G, b 2 B, h 2 H (15)

4 Scenario Reduction Framework

The investment planning model described in the previous section can result
in an extremely large mixed-integer linear optimization problem, depending
on the system size and the granularity of (e.g., number of hours represented
in) the operations model. A common approximation to reduce the computa-
tional complexity of such large-scale stochastic programs involves the use of
load duration curves, in which a small number of representative hours are se-
lected across an entire year (e.g., peak, shoulder, and o↵-peak load hours) [28].
The papers by [18] and [49] describe more sophisticated scenario selection
techniques applied to long and short-term power systems planning problems,
respectively. Other generic scenario reduction frameworks include importance
sampling [31], latin hypercube sampling [61], and moment matching [30]. Con-
vergence of these methods to the optimal solution considering the full distri-
bution of scenarios is guaranteed in the limit, for large sample sizes [16]. Un-
fortunately, these approaches do not provide bounds on the optimal system
cost of the full-resolution problem.
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Here we extend the clustering-based scenario reduction method developed
in [44], which can be used to both reduce the size of the stochastic investment
planning problem and to derive bounds on the optimal system cost. Other
researchers have applied this approach to reduce the computational complexity
of large stochastic programs, but in the context of production cost models
[19, 29, 67] and not investment planning.

In the remainder of this paper, we refer to representative hours h as sce-
narios s, making the connection to stochastic programming explicit. Note that
in our planning problem all stochasticity is restricted to loads and wind, solar,
and hydro power. We let the vector W(s) denote a realization of these param-
eters and denote the corresponding probability space by (P,⌦), where s 2 ⌦.
In practice, this probability space can be constructed using historical and
forecasted observations of these time-dependent parameters, e.g., N = 8, 760
observations of loads and wind, solar, and hydro power from a representative
year, in which case Ps = 1/N 8s 2 ⌦. We partition the space ⌦ into k disjoint
subsets S1, S2, ..., Sk, attempting to minimize the sum of the square di↵er-
ences between the elements and the mean of each subset using the k-means
algorithm. We then construct the new sample space  k, composed of k events
 1, 2, ..., k, and denote a realization loads and wind, solar, and hydro power
by W( i) = E[W(s)|Si] with probability P i = PSi 8i 2 {1, ..., k}. Thus,
each vector W( i) represents the average conditions of load and wind, solar,
and hydro power within each partition Si. Minimization of this metric ensures
that hours of similar characteristics are grouped into the same partition, e.g,
low wind and low demand hours will be separated from high wind and peak
load hours.

For k = 1 this method returns a single observation equal to the expected
value of the stochastic parameters (W( ) = E[W(s)|⌦]) and the model de-
scribed in Section 3 is equivalent to the expected value problem [10]. For small
values of k (k > 1) the set W( 1), ...,W( k) represents a coarse approxi-
mation of the full distribution of uncertain parameters and the investment
planning problem becomes stochastic. Increasing the number of partitions im-
proves the quality of the approximation of the stochastic parameters but at the
expense of a larger and more di�cult optimization model; in practice, there is
an exponential relationship between the number of scenarios considered and
solution time. In the limit, for k = N , the set of events  1, ..., N becomes
equivalent to the original sample space ⌦.

Previous numerical experiments with this method indicate that only a small
number of clusters are required to capture a large percentage of the variance8

present in the full dataset W(!1), ...,W(!N ). The remaining fraction of vari-
ance converges to 1 asymptotically as the cluster count is increased [29,44,62].
Hobbs and Ji [29] also compare the performance of di↵erent hierarchical and
non-hierarchical clustering algorithms for probabilistic production cost simu-
lation and conclude that k-means yields the best clustering e�ciency.

8 The percentage of variance captured relative to the full dataset is measured as the ratio
of the between-cluster variance and the total variance.
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Potential extensions to this scenario reduction framework include consid-
eration of other sources of uncertainties such as fuel prices, capital cost of
transmission and generation, renewable targets, and emissions policies [42].
As in [29], those stochastic parameters could be clustered separately from the
space of load, wind, solar, and hydro observations. The main advantage of
creating representative scenarios through a clustering algorithm compared to
sampling approaches is the possibility of defining lower and upper bounds on
the total system cost. We describe this property in the next section.

5 Scenario-Based Decomposition and Bounds Computation

In this section we describe our implementation of the Progressive Hedging
decomposition algorithm to solve the stochastic MILP investment planning
problem described in Section 3. We also propose a relaxation of the renewable
target constraint, to make the problem separable on a per-scenario basis. In
Section 5.2 we propose an approach to compute upper and lower bounds on
the optimal system cost. We solve the MILP investment planning problem
with clustered scenarios and find a trial investment plan using Progressive
Hedging. We then compute lower bounds using a linear relaxation of the in-
vestment planning problem and upper bounds by testing the trial investment
plan against an economic dispatch simulation using the full distribution of
loads and wind, solar, and hydro output.

5.1 A Progressive Hedging Implementation

We solve our stochastic investment planning model using the Progressive Hedg-
ing (PH) algorithm proposed by Rockafellar and Wets [55]. Unlike Benders
decomposition, which separates investments (represented in a master prob-
lem) from operations (represented in subproblems), PH decomposes the prob-
lem by scenario. Scenario-based decomposition is accomplished by introduc-
ing scenario-specific investment variables xs and initially relaxing the non-
anticipativity restrictions, i.e., the constraints that require xs = xu 8s, u 2 ⌦.
Non-anticipativity is then restored iteratively by penalizing deviations from
the average “first-stage” or investment solution (i.e., x̄ =

P
s2S Psxs). Thus,

each sub-problem in PH corresponds to a deterministic version of the stochas-
tic problem, with an penalty-augmented objective function – each of which
can be solved independently. Although the PH decomposition framework re-
sults in several mixed-integer investment planing problems, these subproblems
can be solved e�ciently using o↵-the-shelf commercial solvers. Consequently,
PH avoids the growth in size and complexity of the master problem commonly
associated with Benders-based decomposition, which is often solved as a single
large mixed-integer linear program [44].

In order to apply PH to the investment planning problem defined in Sec-
tion 3, we must first relax any constraints that link variables across scenarios,
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e.g., expected-value constraints. In our case, the renewable portfolio standard
(RPS) target (Constraint (6)) couples economic dispatch variables from all
hours within a sample year. In practice, RPS targets are considered soft con-
straints. Most RPSs allow electric utilities to violate a pre-specified target
by imposing a fixed cost per MWh of energy not supplied from qualifying
renewable resources. Further, utilities that generate more power from renew-
ables than the minimum required per year can sell those renewable credits
to utilities in other regions, or bank them for compliance in subsequent years.
Using this economic interpretation of potential mismatches to the annual RPS
target, we dualize Constraint (6) in the objective function as follows:

min CC +
X

s2⌦
PsOCs + �

"
RPS(

X

s2⌦
Ps(
X

i2G

gis �
X

i2GR

gis))

#
. (16)

The parameter � represents a price ceiling on the cost of meeting the RPS
target. If the price ceiling is too low, the planning model will recommend meet-
ing only fraction of the annual target (

P
s2⌦

P
i2GR

gis) and as a consequence
will pay a non-compliance fine for the shortfall (i.e., RPS(

P
s2⌦ Ps(

P
i2G gis�P

i2GR
gis) � 0). If the price ceiling is too high, it becomes profitable to supply

more power from renewables than the minimum required by the target. These
additional revenues are expressed as a negative cost in the objective function
of the planning problem (i.e., RPS(

P
s2⌦ Ps(

P
i2G gis �

P
i2GR

gis)  0). In
our experiments, we estimate the value of � that supports compliance with
the renewable target by performing a sensitivity analysis on the LP relaxation
of the investment planning problem. The extensive form of the LP relaxation
can be easily solved using an o↵-the-shelf package and no decomposition is
required. However, market-based values for � from enacted renewable policies
can also be used as an input to the model.

Using a more compact notation we define the investment planning problem
as follows:

TC((⌦, P )) = min
x

e · x+
X

s2⌦
Psgs(x) (17)

s.t. Ax  b (18)

x = (x
a

,x
b

), x

a

2 {0, 1}, x

b

� 0 (19)

The vector x denotes the transmission (binary) and generation (continu-
ous) investment variables and the vector e denotes capital costs associated with
the investment alternatives. Constraint (18) is a vector form representation of
generation build limits (Constraint 4) and installed reserves (Constraint 5).
The function gs(x) denotes the operations problem for a given scenario s 2 ⌦
and is defined as follows:

gs(x) = min
ys

c

s

· y
s

(20)

s.t. Uy

s

 r

s

� Tsx (21)

y

s

� 0 (22)
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The vector y
s

represents generation dispatch levels, phase angles, power flows,
and demand curtailment. Constraints (7)-(13) and (15) can be written in vec-
tor form, abstracted in Constraint (21). The vector of cost coe�cients c

s

rep-
resents marginal costs, load curtailment penalties, and the terms associated
with the dualization of Constraint (6).

To describe the PH algorithm, we first introduce an iteration counter v, a
set of multiplier vectors wv

s

, and a vector ⇢. Pseudo-code for PH is then given
as follows:

Algorithm 1 Progressive Hedging

1: Initialization:
v  0 and w

v

s

 0, 8s 2 ⌦
2: Iteration 0:

x

v

s

= argmin

x

f(x) + gs(x),
subject to constraints (18), (19), (21), and (22), 8s 2 ⌦

3: Aggregation:
x̄

v =
P

s2⌦ Psx
v

s

4: Convergence check:
If
P

s2⌦ Ps||xv

s

� x̄

s

v|| < ✏, stop.
5: Iteration update:

v = v + 1
6: Multiplier update:

w

v

s

 w

v�1

s

+ ⇢(xv�1

s

� x̄

v�1), 8s 2 ⌦
7: Iteration v:

x

v

s

= argmin

x

f(x) + gs(x) +w

v

s

· xv

s

+ 1
2⇢ · ||xv

s

� x̄

s

v�1||2,
subject to Constraints (18), (19), (21), and (22), 8s 2 ⌦

8: Repeat:
Go to Step 3.

The performance of PH in practice is strongly dependent on the value of the
penalty parameter ⇢, used to update the multipliers w

v

s

. For example, small
⇢ values can significantly delay convergence, as insu�ciently large changes in
the multipliers wv

s

will fail to yield perturbations to the first stage investment
variables x

v

s

. Similarly, large ⇢ values can cause “over-shooting” by inducing
radical changes in x

v

s

values, yielding oscillatory behavior in PH. A “cost-
proportional” approach to setting ⇢ appears to be e↵ective in practice [64], in
which the value of a specific component of ⇢ is proportional to the coe�cient
of the corresponding variable in the objective function of the deterministic
scenario optimization problem. We follow this approach and define values of
⇢ for transmission and generation investment variables equal to ⇢lT = µTLCl

and ⇢iG = µGGCi, respectively. The parameters µT and µG are scaling factors
over which we perform a sensitivity analysis, as described in Section 7.3.

While PH is provably convergent in the convex case [55], the presence of
discrete decision variables can lead to cyclic behavior that prevents termination
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of the algorithm. To detect the presence of such cycles, we analyze the history
of the multiplier vectors wv

s

at each PH iteration, using computationally and
memory-e�cient techniques described in [64]. If cycles are of su�cient length
(as quantified in terms of the number of PH iterations between recurrent values
of a multiplier), then a variable involved in the cycle is selected arbitrarily. The
cycle is then broken by fixing the value of the corresponding variable in each
scenario s 2 ⌦ to the largest observed value in any scenario. This strategy,
referred to as “slamming”, guarantees the feasibility of all sub-problems in so-
called one-sided diet problems [21] – of which our investment planning problem
is an instance. In our experiments, cycles are detected and broken on an infre-
quent basis. Although cycle detection and breaking (among other strategies)
are e↵ective means to obtain a convergent PH algorithm for problems with
discrete decision variables, no proof of optimality is available. Consequently,
PH has historically been viewed as a heuristic in the mixed-integer case [37].
However, recent advances in PH have included general methods for computing
rigorous bounds at any iteration of the algorithm [20].

Another technique to accelerate PH involves the introduction of an opti-
mality gap when solving scenario sub-problems. In particular, optimal solu-
tions are not necessary during early PH iterations, where PH is attempting
to establish reasonable approximations of the multipliers w

v

s

. Then, as PH
converges, the optimality gap can be incrementally reduced.

Finally, to accelerate convergence of the PH algorithm, we employ variable
fixing. Our variable fixing strategy is based on the heuristic that if a variable’s
value is non-anticipative for a contiguous number of PH iterations, it is unlikely
to change in subsequent iterations and can therefore be fixed at its present
value. Variable fixing leads to smaller scenario sub-problems, which in turn
leads to faster solve times.

5.2 Computation of Lower and Upper Bounds

We now describe a methodology to compute global lower and upper bounds on
the optimal system cost of our stochastic mixed-integer investment planning
problem. These bounds are applicable to planning problems with stochastic
right-hand-sides or stochastic cost coe�cients. Although we here we only deal
with the former, Jensen’s lower bound is also applicable to the latter class of
problems by a simple transformation.9

For the development of a lower bound, we first note that the operations
problem defined by the expression

P
s2⌦ Psgs(x) is a linear program with

a stochastic right-hand-side (Constraints (21)). For a given trial investment
plan x, the standard lower bound based on Jensen’s inequality can be ap-
plied [10, 44]. Therefore, given a partition S1, ..., Sk of the scenario space ⌦,
and a set of representative scenarios  k = { 1, ..., k} such that W( i) =

9 Note that the problem min

P
s2⌦ csxs, subject to xs � 0 can be re-written as

min

P
s2⌦ us, subject to us � csxs and us, xs � 0. Jensen’s inequality is directly ap-

plicable to the latter.
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E[W(s)|Si], the stochastic operations problem solved using clustered parame-
ters (

P
 2 k P g (x)) provides a lower bound on

P
s2⌦ Psgs(x). Furthermore,

if a hierarchical partitioning algorithm is used, then the bound is a monoton-
ically increasing function of the number of clusters (i.e.,

P
 2 k P g (x) P

 2 k+1 P g (x)) [10].
The lower bound can also be extended to the mixed-integer linear invest-

ment problem, as in [44]. Let the vector x⇤ denote the optimal solution to the
investment planning problem TC(⌦). By applying Jensen’s inequality to the
operations problem, we obtain the following:

e · x⇤ +
X

 2 k

P g (x
⇤)  e · x⇤ +

X

s2⌦
Psgs(x

⇤) 8k = 1, .., |⌦|. (23)

Let x

⇤
k

denote an optimal solution to the investment planning problem
TC( k). The following inequality then holds for any investment plan x feasible
to Constraints (18) and (19):

e · x⇤
k

+
X

 2 k

P g (x
⇤
k

)  e · x+
X

 2 k

P g (x) 8k = 1, .., |⌦| (24)

Combining inequalities (23) and (24), it follows that TC( k)  TC(⌦)
8k = 1, .., |⌦|. Consequently, the optimal objective function value of the in-
vestment planning problem solved using clustered data (TC( k)) provides a
lower bound on the total system cost of the same problem considering the
full distribution of stochastic parameters (TC(⌦)). Convergence of TC( k)
to TC(⌦) as the number of partitions is increased is discussed in [44].

Note that because PH is a heuristic in the case of mixed-integer linear prob-
lems, we cannot guarantee of tightness of the lower bound TC( k). However,
we find that the linear relaxation TCLP ( k) empirically provides a tight lower
bound for our investment planning problem. Furthermore, because a linear re-
laxation of our investment planning problem can be solved to optimality using
a barrier or simplex algorithm, the resulting objective function value provides a
valid global lower bound on TC(⌦) (i.e., TCLP ( k) < TC( k)  TCPH( k)).
The bound developed in [20] can be also utilized.

The inequalities described above also allow us to develop upper bounds on
TC(⌦). Let x⇤

k

denote the solution to TC( k) found using PH. From inequal-
ities (23) and (24) it follows that e · x⇤

k

+
P

s2⌦ Psgs(x⇤
k

) is an upper bound
on TC(⌦). Evaluating the expression e · x⇤

k

+
P

s2⌦ Psgs(x⇤
k

) only requires
the solution of the operations problems gs(x⇤

k

) 8s 2 ⌦. These sub-problem
are both separable and linear, and could be solved in parallel if necessary. For
extremely large sample spaces (|⌦| >> 1) it is also possible to approximate
the expression

P
s2⌦ Psgs(x⇤

k

) using a Monte Carlo simulation [52].
Given the results presented above, we progressively improve the solution

quality of our investment planning problem as follows:
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1. Initialize the iteration counter (k = 0),and set the initial bounds (LB0 =
� 8 and UB0 = + 8).

2. Set k = k + 1.
3. Compute a lower bound on TC(⌦) by solving the linear relaxation of

the mixed-integer investment planning problem using clustered hours. Set
LBk = TCLP ( k).

4. Solve the mixed-integer investment planning problem with clustered hours
(TC( k)) using PH. Denote the resulting trial investment plan by x

k

.
5. Compute an upper bound on TC(⌦). First, solve the operations prob-

lems gs(xk

) 8s 2 ⌦ and then compute the true system cost e · x
k

+P
s2⌦ Psgs(xk

) of the trial investment plan x

k

.
6. If UBk�1 > e · x

k

+
P

s2⌦ Psgs(xk

), set UBk = e · x
k

+
P

s2⌦ Psgs(xk

)
and x

⇤ = x

k

. Otherwise, UBk = UBk�1 and x

⇤ = x

k�1

.
7. If (UBk � LBk)/UBk < ✏ stop, the best investment plan found so far is

x

⇤. Otherwise, go to Step 2.

As discussed in [44], increasing the number of partitions (i.e., increasing k)
will reduce the optimality gap with respect to the objective function value of
PH ((UBk �TCPH( k))/UBk). Although convergence of (UBk �LBk)/UBk

to zero as k is increased is not guaranteed in our case due to the duality
gap, through numerical experiments we find that the optimality gap of the
investment plans found using our methodology are acceptable for practical
applications.

6 Test Case: WECC 240-bus System

Our numerical experiments are performed on a 240-bus representation of the
Western Electricity Coordinating Council (WECC) in the US [53]. This test
case was expanded in [42] to account for transmission and generation invest-
ment alternatives. The network is composed of 448 transmission elements and
157 aggregated generators. We assume two types of transmission investment
alternatives: reinforcements to existing transmission backbones and new ra-
dial interconnections to renewable hubs. As in [42], we allow for a maximum
of two new 500kV circuits to reinforce existing transmission corridors and up
to four new transmission lines to any identified renewable hub. For illustra-
tion purposes we enforce a 33% Renewable Portfolio Standard in all the US
states that belong to the WECC, similar to the scenario of renewable targets
studied in [38]. An extensive description of transmission and generation in-
vestment alternatives is provided in [41], and the full instance can be obtained
by contacting the authors.
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Fig. 1 Illustration of the WECC 240-bus system [42].

7 Numerical Experiments

7.1 Computational Environment

All models and algorithms were developed using the Coopr (https://software.
sandia.gov/trac/coopr) open-source Python library for optimization, devel-
oped and maintained by Sandia National Laboratories. The core deterministic
(individual scenario) optimization models are expressed in Coopr’s Pyomo al-
gebraic modeling language [25,26]. We use Coopr’s PySP library [65] to both
model our stochastic investment planning problems and to solve them using
PH. All data and models are available upon request. All customizations re-
lating to ⇢ setting, variable fixing, cycle detection / breaking, and variable
slamming are performed through a parameterization of PySP’s WW exten-
sion module. All scenario solves were performed using IBM’s CPLEX 12.6
mixed-integer solver.

Experimental trials were executed on a dedicated commodity 48-core Linux
workstation with 512GB of RAM. The individual processors are dual quad-
core, hyper-threaded Intel Xeon microprocessors, with a clock speed of 2.3GHz.
Large experiments were executed on the Red Sky/Red Mesa high-performance
computer, which consists of 1,920 nodes containing two quad-core 2.93 GHz
Nehalem X5570 processors apiece. We used Coopr version 3.5, running Python
2.7.3.

Considering 8,736 scenarios in the planning problem results in a mixed-
integer linear program with 15M variables (370 binaries for transmission) and
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35M constraints. An attempt to solve the extensive form of the 100-scenario
problem yielded no feasible solution after one day of wall clock time on the
48-core workstation.

7.2 Selection of the Price Ceiling of Renewable Energy Certificates (�)

We select the value of the price ceiling of Renewable Energy Certificates (�)
to enforce the renewable target constraint by performing a sensitivity analysis
on a linear relaxation of the mixed-integer planning problem. To ensure that
the variability of time-dependent resources is at least partially represented,
we use 50 representative scenarios obtained using the clustering methodology
described in Section 4. We enforce a 33% renewable target across all regions
that belong to the WECC, which is analogous to one of the regulatory scenarios
analyzed in [42].

Table 1 Sensitivity analysis of renewable supply as a function of �.

� [$/MWh] 0 10 20 30 40 50 60 70 80 90 100

Renewables [%] 7.5 10.3 14.8 20.1 25.1 28.7 31.7 33.7 37.5 37.9 38.2

As shown in Table 1, not enforcing a renewable target (� = 0) would
only result in a 7.5% of demand being supplied from renewables. Such in-
vestments occur for purely economic reasons and do not require additional
revenue streams from the production of RECs to be cost-e↵ective. Raising
the price ceiling � naturally yields a monotonic increase in the penetration of
renewables. We find that a price ceiling of $70 per MWh results in a 33.7%
penetration of renewables (Table 1), which meets the target. All of the re-
maining numerical experiments are run assuming � = 70 [$/MWh]. The true
amount of renewable supply per year is computed in the next section using a
52-week economic dispatch.

7.3 PH Configuration

For illustration purposes we limit the number of threads assigned to each PH
subproblem to one. For larger problems, increasing the number of threads as-
signed to each subproblem could potentially reduce solution times or improve
solution quality for mixed-integer linear programs that require solution of sev-
eral nodes of the MILP branch and cut tree. In our case, the relaxation induced
neighborhood search (RINS) heuristic10 provided by CPLEX yields solutions
within 1-2% of optimality at the root node. Therefore, the e�ciency gains
due to parallelization of the MILP branch and cut process are rather modest.

10 We invoke the RINS heuristic every 100 nodes in the MILP branch and cut tree.



Stochastic Transmission and Generation Planning 19

Additional options passed to the CPLEX solver include aggressive scaling and
numerical emphasis.

Within PH we set the MILP gap tolerance for sub-problem solves at itera-
tions 0 and 1 to 1%. This MILP gap is then progressively tightened to 0.001%
as the first stage variables (investments) converge. PH is terminated once the
convergence metric value is equal or below 0.0001.

As mentioned in Section 5, the selection of the ⇢ parameter, the delay
used to fix variables that have converged, and the MILP optimality gap are all
features that influence the convergence of PH. Here, we perform a sensitivity
analysis with respect to subsets of these parameters based on our previous
experience solving stochastic optimization problems using PH. As in Section
7.2, we use a 50-cluster investment planning problem to test di↵erent config-
urations of the PH algorithm. The optimal objective function value of the LP
relaxation is $551.7B and provides a lower bound that we use to measure the
quality of the investment plan from the mixed-integer linear problem found
using PH.

Table 2 shows the results of a sensitivity analysis with respect to di↵erent
values of the ⇢ parameter. In the table, the columns ”F.S. Cost” and ”Sol.
Time” respectively denote the total investment cost and the wall clock time
required for PH to converge. We find that a common default value of the
parameter (⇢ = 1 for all variables) forces a too-rapid convergence of the first
stage variables, which yields an investment plan with a 23.8% optimality gap
with respect to the LP relaxation. Defining variable-specific values of ⇢ in
proportion to their objective function cost coe�cients immediately results in
an improved solution. However, the cost-proportional scaling parameter µG

on generation investment variables ultimately makes the largest di↵erence in
solution quality.

In our formulation, transmission and generation infrastructure are mutu-
ally substitutable. Lack of generation capacity to meet demand in one region
can be compensated by additional transmission infrastructure that allows for
imports from a neighboring region and vice versa. In the WECC test case the
capital costs per MW for transmission range from $400.8 (an extremely short
line) to $1.8M (mean=$0.2M and standard deviation=$0.3M) and from $0.7M
to $5.6M for generation (mean=$2.9M and standard deviation=$1.7M).11 Ig-
noring geographical constraints, the addition of a new MW of generation costs
between 1,000 to 10,000 times more than adding a MW of transmission ca-
pacity (the cheapest transmission alternative with respect to cheapest and
average generation cost, respectively). Consequently, using cost proportional
values of ⇢ directly in PH imposes a disproportionately large pressure on the
convergence of generation investment variables. As shown in Table 2, scaling
the ⇢ parameters associated with transmission improves the solution quality
significantly and reduces first stage investment costs. We find that the values
of µG that yield the lowest total costs (0.001 and 0.0001) are inversely propor-

11 Histograms of generation and transmission capital costs per MW are shown in Figures
3 and 4 in the Appendix.
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Table 2 Sensitivity analysis of PH with respect to di↵erent configurations of ⇢. We impose a
time limit for each PH subproblem solve equal to 60 seconds. Binary and continuous variables
are fixed if values are non-anticipative after 6 or 10 contiguous iterations, respectively.

Total Gap F.S. Sol. N.
Rho configuration Cost LP Cost Time Iter.

[$B] [%] [$B] [s]

⇢ = 1 723.8 23.8 496.0 337.5 151
Cost proportional ⇢, µT = 1, and µG = 1 705.6 21.8 487.2 2674.8 60
Cost proportional ⇢, µT = 1, and µG = 0.1 699.5 21.1 484.6 2232.1 58
Cost proportional ⇢, µT = 1, and µG = 0.01 651.2 15.3 450.5 2480.7 63
Cost proportional ⇢, µT = 1, and µG = 0.001 562.2 1.9 360.1 2041.0 122
Cost proportional ⇢, µT = 1, and µG = 0.0001 560.8 1.6 351.2 2661.8 152
Cost proportional ⇢, µT = 1, and µG = 0.00001 565.5 2.4 346.1 2231.8 174

tional to the ratios between the cheapest and average generation alternatives
and the cheapest transmission investment alternative per MW. Decreasing µG

below those values yields even lower investment costs, but results in higher
total cost. Based on the results of this sensitivity analysis, all of our remaining
experiments are conducted using cost proportional values of ⇢ with scaling
factors µT = 1 and µG = 0.0001.

7.4 Data clustering and computation of lower bounds

We construct a sample space of load and wind, solar, and hydro output us-
ing 151 profiles and 8,736 observations from historical data [42]. Clustering of
this data was performed using the Python SciPy package. Because loads and
renewables data are supplied in di↵erent units, we normalize all profiles by sub-
tracting the parameter mean and dividing by the standard deviation, yielding
uniform weights for all parameters when executing k-means. User preferences
can be supplied, in order to modify weights in situations where errors in some
parameters (e.g., loads) are more important than in others (e.g., solar). How-
ever, implementation of a weighted k-means algorithm is beyond the scope of
our research.

Table 3 shows the fraction of variance present in the full dataset captured
using cluster counts ranging from 1 to 1000. The table also shows the number
of variables and constraints, total cost, and solution time of the LP relaxation
of the planning problem formulated using the clustered data. Note that only
100 representative clusters are needed to capture 49.2% of the variance of all
the stochastic parameters. Refining the number of partitions to 1000 increases
the fraction of variance captured to 80.6%. As shown in Figure 2, the asymp-
totic convergence of the fraction of variance captured to 100% (depicted by the
blue line) – a standard behavior of clustering algorithms – is also mirrored in
the improvement of the lower bound (depicted by the red line) as the cluster
count is increased. Thus, even though the size of the problem and solution
times scale linearly as a function of the number of clusters (see Table 3), the
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Table 3 Fraction of variance captured relative to the full dataset, number of variables and
constraints, total cost, and solution times of the LP relaxation as a function of the number
of clusters.

Number of Fraction of Number of Number of Total Solution
Clusters Variance Variables Constraints Cost Time

[%] [103] [103] [$B] [s]

1 0.0 2.6 4.5 530.1 0.3
10 32.2 18.8 40.1 548.2 5.7
20 36.8 36.9 79.6 549.1 9.9
30 39.6 54.9 119.2 550.3 16.2
40 41.7 72.9 158.7 550.4 17.9
50 43.2 90.9 198.3 551.7 19.9
100 49.2 181.1 396.0 555.4 38.2
200 56.2 361.4 791.5 557.8 75.3
300 61.7 541.7 1187.0 559.7 208.4
400 66.0 722.0 1582.5 561.3 192.2
500 69.7 902.3 1978.0 560.8 314.5
1000 80.6 1803.8 3955.5 562.3 731.9
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Fig. 2 Fraction of variance captured relative to the full dataset and objective function
value of the LP relaxation of the investment-planning problem as a function of the number
of clusters.

computational e↵ort required to improve the lower bound increases exponen-
tially (i.e., improvement in lower bound or fraction of variance captured versus
solution time).

7.5 Solution of the Stochastic MILP and Computation of Upper Bounds

For the computation of (primal) investment plans and upper bounds on total
system cost we follow the procedure outlined in Section 5.2. Table 4 sum-
marizes results for experiments considering between 1 and 500 representative
scenarios created using our clustering-based scenario reduction framework. We
compute the GAPLB (8th column) as the percentage di↵erence between the
objective function value of the MILP investment problem solved using PH
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(2nd column) and the linear relaxation of the 1000-scenario problem.12 This
gap provides a representative metric of the relative quality of the solution
found using PH with respect to the true optimal solution of the MILP prob-
lem (which cannot be computed exactly in tractable run times).

The GAPUB quantity measures the relative error associated with using a
reduced number of clustered hours in the MILP problem with respect to the
upper bound (UB). We compute the upper bound (7th column) by adding the
first stage cost from the MILP problem (investment costs, 3rd column) and the
operating costs that result from testing the performance of the trial investment
plan against a 52-week economic dispatch simulation (6th column). The GAP
quantity is then the optimality gap of the upper bound (UB) with respect
to the objective function value of the linear relaxation of the 1000-scenario
problem.

Although we cannot guarantee convergence of PH to the optimal solution
of the full MILP investment planning problem considering all scenarios, we
find that the total system costs increase monotonically as we increase the
number of scenarios. Improving the resolution of the operations problem in
the MILP planning problem yields lower investment costs (first stage costs)
and reductions in operating costs. Both e↵ects combined are reflected in a
reduction of the total optimality gap (GAP ). The single-cluster experiment
(k = 1) corresponds to the expected-value problem and its optimality gap
provides an upper bound on the value of the stochastic solution (VSS) [10,44].
For our set of scenarios, an upper bound on VSS is 20.03% of the upper bound
($662.9B) or $132.8B. This quantity reflects the potential cost savings that
would result from refining the partitioning of the space of loads and wind,
solar, and hydro output observations.

Increasing the number of clusters from 1 to 50 reduces the optimality gap
from 20.03% to 5.36%, but at the expense of an increase in solution time of
the MILP problem from 15.1 seconds to 596.0 seconds. Further refinements of
the number of partitions yield even tighter optimality gaps, but improvements
beyond 50 scenarios (clusters) yields low marginal improvements. Increasing
the number of scenarios to 500 reduces GAPUB to 0.02%, which indicates that
the di↵erence between the predicted operating costs using clustered hours and
the 52-week economic dispatch simulation is negligible. Note that the solu-
tion time for the 500-scenario problem is only 1.9 hours, which represents
a significant reduction in solution time relative to our attempt to solve the
extensive form of the smaller 100-scenario problem in 24 hours. As an addi-
tional experiment we also solved the larger problems (k � 100) on our 48-core
workstation. We find that solution times modestly increase, to 0.5 hours for the
100-scenario experiment and 8.7 hours for the 500-scenario instance. Thus, our
solution framework can be used to obtain high-quality solutions to large-scale
planning problems on either high-performance computers or a shared-memory
commodity workstations.

12 Note that the lower bound obtained using the linear relaxation is global and it does not
depend on the number of scenarios used to find a trial investment plan. Therefore, the more
scenarios of clustered hours considered in the linear relaxation, the tighter the lower bound.
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Table 4 Summary of PH runs and computation of upper bounds using the 52-week eco-
nomic dispatch. All experiments for k � 100 were run on the Red Mesa high-performance
computer. TC and OC denote Total and Operating Costs, respectively. ED stands for eco-
nomic dispatch.

MILP Investment Problem (PH) 52-week ED

k TC FS Cost Sol. Its. OC UB GAPLB GAPUB GAP

[$B] [$B] Time [s] [$B] [$B] [%] [%] [%]
1 542.9 386.2 15.1 1 276.7 662.9 2.36 18.10 20.03
5 554.8 357.9 177.1 89 237.8 595.7 2.11 6.86 8.82
10 557.7 356.5 241.0 100 233.9 590.4 1.70 5.54 7.15
20 558.0 353.4 366.3 134 232.3 585.7 1.59 4.73 6.25
30 559.6 351.9 467.2 136 233.4 585.3 1.67 4.39 5.98
40 560.0 352.4 524.8 148 231.7 584.1 1.72 4.12 5.77
50 561.0 350.5 596.0 136 232.4 582.9 1.66 3.76 5.36
100 565.7 351.7 940.3 186 231.0 582.7 1.82 2.92 4.69
200 568.3 349.5 1500.4 242 231.1 580.6 1.85 2.12 3.93
300 572.0 347.3 2360.8 326 231.5 578.8 2.16 1.18 3.31
400 573.7 349.2 3721.2 414 230.0 579.2 2.16 0.95 3.09
500 575.4 345.1 6933.6 700 230.4 575.5 2.53 0.02 2.55

Next, we examine the impact of our dualization scheme for the RPS con-
straint. We find that our relaxation of the renewable target yields renewable
penetration levels that range from 31.0% to 31.9%, with an average of 31.3%
for all experiments listed in Table 4. This implies that on average, only 1.7%
of the 33.0% target is met using Renewable Energy Certificates capped at $70
per MWh. Achieving a smaller gap between the actual and target would re-
quire minor increases to this price ceiling and re-execution of our experiments;
however, such analysis is beyond the present scope.

Finally, we analyze the duality gap for 100 di↵erent single-scenario invest-
ment planning problems, solved using CPLEX. We impose a 0.5% optimality
gap and set a time limit of 1 hour. We find that the average gap with respect to
the best incumbent solution from the MILP problems (upper bound) is 2.17%
and with respect to the best lower bound is 1.39%. These results lead us to
hypothesize that the quality of the solution found using PH is in practice far
better than what is implied via the GAPLB quantities displayed in Table 4.
For instance, if these results held for multi-scenario problems, and the linear
relaxation gap was 1.5% for the 500-scenario problem, the total optimality
gap would be 0.81% instead of 2.55%. Therefore, the development of a tighter
lower bound could directly improve our methodology. Nevertheless, we believe
that a solution with an optimality gap of 2.55% provides invaluable insights
to decision makers that rely on these tools for long-term investment planning.

7.6 Analysis of Primal Solutions

Finally, we study the nature of changes in the primal investment solutions as
we increase the number of scenarios (clusters) in the MILP planning problem.
In Table 5, we show investments as a function of the number of clusters for
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Table 5 Sample of aggregate transmission and generation capacity investments per state
as a function of the number of scenarios. All percentages are calculated with respect to the
500-scenario results. Total investments account for all areas in the WECC. Results in the
last row are total capacity investments for the 500-scenario problem in GW.

Transmission Generation

k CA MT WA WY Total CA MT WA WY Total
CCGT CT CT Wind

[%] [%] [%] [%] [%] [%] [%] [%] [%] [%]
1 66.1 49.1 42.3 498.6 95.3 78.3 285.5 0.0 323.4 106.9
5 66.1 67.5 59.4 221.2 91.2 85.9 187.9 66.7 128.5 102.5
10 66.1 67.5 74.3 121.2 91.8 83.2 78.6 109.4 112.7 101.9
20 66.1 67.5 93.9 148.6 98.6 86.8 96.7 103.5 111.2 101.8
30 100.0 67.5 74.3 148.6 96.8 87.1 124.0 117.4 109.8 101.4
40 66.1 67.5 93.9 148.6 98.6 95.4 120.8 107.7 108.4 101.5
50 66.1 67.5 93.9 148.6 98.6 93.5 129.3 118.0 104.5 101.2
100 100.0 85.1 93.9 100.0 98.1 94.3 111.2 97.4 104.4 101.5
200 100.0 85.1 93.9 100.0 98.1 98.2 101.3 98.0 102.4 101.0
300 100.0 85.1 93.9 100.0 98.1 98.0 112.9 100.9 99.6 100.5
400 100.0 100.0 108.9 100.0 102.8 99.7 107.0 99.8 100.4 100.7
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
[GW] 9.5 5.4 13.3 0.7 84.2 13.9 7.0 9.8 4.7 195.8

a sample of four states in the WECC. We find that the expected-value prob-
lem (k = 1) underestimates transmission capacity by 4.7% and overestimates
the need for generation by 6.9% with respect to the 500-scenario solution. Al-
though the discrepancies are not large in magnitude at an aggregate, system-
wide level, using a small number of representative scenarios can significantly
bias the distribution of investments at the state level.

For instance, the expected-value problem overestimates the need for trans-
mission infrastructure by 398.6% and wind capacity by 223.4% in Wyoming.
It also underestimates the need for new transmission by 57.7% and CT gen-
eration by 100% in Washington. Increasing the number of scenarios in the
operations problem embedded in the MILP planning problem reduces the er-
ror with respect to the 500-scenario problem. However, we find that at least
400 scenarios are needed to obtain investment plans with an error below 10%.13

Although these results are not general, they highlight the importance of con-
sidering large samples of hourly observations of loads and wind, solar, and
hydro output to capture the true economic value of these resources.

8 Conclusions

In this article we propose a practical and scalable solution framework for
stochastic transmission and generation investment planning problems. We de-
velop a simple stochastic investment planning problem assuming that uncer-

13 We are implicitly assuming that the 500-scenario solutions are extremely close to the
true optimal. We justify this assumption by the small optimality gap attained with that
experiment.
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tainty is restricted to load and wind, solar, and hydro power. To reduce the
computational complexity of the problem, we utilize the k-means clustering
algorithm as a scenario selection method. This algorithm automatically groups
observations into clusters with similar characteristics (e.g., peak-load and low-
wind or low-load and high-wind conditions) and returns one representative
scenario from each cluster, the centroid. We solve the resulting stochastic
mixed-integer linear program using Progressive Hedging, which decomposes
the problem on a scenario basis.

Because all stochastic parameters of the planning model are right-hand-
side components of constraints, we apply Jensen’s inequality to compute a
lower bound on the optimal system cost. Application of this lower bound
requires dualizing the renewable target constraint that links variables across
scenarios. This approximation yields policies that enforce renewable targets
set price ceilings on the value of violating the renewable target constraint.
Therefore, mismatches on the quantities of renewable power supplied per year
with respect to the target have an economic interpretation and can be priced in
the objective function. We approximate the value of the Lagrangian multiplier
needed to attain the renewable target by performing a sensitivity analysis on
the linear relaxation of the planning model.

For each trial investment plan found using PH, we compute an upper bound
by testing its performance against a 52-week economic dispatch problem that
can be solved in parallel. Although we cannot guarantee convergence of PH to
the optimal solution of the mixed-integer investment problem, our numerical
experiments suggest that careful configuration of the algorithm can yield high-
quality investment plans. We find that only 50 scenarios are needed to attain
optimality gaps of 5.36% and refining the partitioning of the probability space
to include up to 500 representative scenarios can reduce the gap to 2.55%.
Solution times for the 500 scenario instance range from 1.9 hours on the Red
Mesa high-performance computer to 8.7 hours on a 48-core commodity work-
station. In contrast, an attempt to solve the extensive form of the 100-scenario
problem resulted in no feasible solution after more than a day of wall clock
time.

As mentioned in Section 4, here we only consider uncertainty associated
with time-dependent parameters. A potential extension of our methodology
is to account for long-term market and regulatory uncertainties, as in [42].
Such modeling would involve consideration of stochastic parameters that are
not just on the right-hand-side of constraints, but also in the objective func-
tion. Through a simple transformation described in Section 4, one could still
apply Jensen’s inequality to compute a lower bound on the optimal system
cost, but the bound would only be valid for continuous investment variables.
Another important future research direction is the application of our method-
ology to solve multi-stage investment planning problems. All our results based
on Jensen’s inequality and PH are also applicable to multi-stage formulations.
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9 Appendix

9.1 Cost data
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Fig. 3 Histogram of generation capital costs per MW.
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Fig. 4 Histogram of transmission capital costs per MW.


